电木板和铝合金价格对比_电木和铝哪个硬度高
1.光的作用有什么
2.跪求模具毕业论文!!!题目为:浅谈激光在模具制造中的应用!求高人指教!!!
3.激光器有哪些用途
4.激光的作用
光的作用有什么
摄影艺术得光与影的造型艺术,一个成功的摄影家,也就是一个光影学家。一幅幅的优秀摄影佳作,都离不开光的塑造和表现。可见,光在摄影艺术领域中的地位和作用是何等重要。
一、光在摄影艺术中的效应
摄影使用的光感材料必须通过光源才能发挥其应有的作用。光线在摄影中不仅用来照明被摄物体,它还担负着传递被摄物体的信息,在这方面它起着桥梁和媒介的作用。例如,被摄物体形状、体积、数量,色彩、质感、空间深度感等信息,以及被摄物体影调的明暗配置、画面气氛、层次等诸多方面,都必须通过光线的效应才能表现出来。所以,摄影者不能单纯从表像观察到光、而要在实际的构思中去灵活运用光。在一个被摄物中,不同采光的角度、照度,得出的效果各异。然而。我们必须掌握光在摄影中的效应和“光感”,善于运用,感觉敏锐,是摄影者应有的本能,画家靠手中熟练的画笔来描绘物体,摄影有凭着运用光线来表现被摄物。因此,光是摄影的灵魂,完成摄影的过程需要光,表现摄影艺术本质依靠光,正确地认识光线,摸透光的变化规律,了解它所带来的艺术效果,在摄影艺术创作中充分去运用,才能做到惜光如金,用光如神。
二、光对摄影艺术造型的表现力
摄影艺术是造型艺术,光对摄影艺术造型的表现力起着关键的作用。在摄影创意中要有“光”的造型意识,调动“光”的造型手段,才能达到它的艺术效果。摄影中被摄物体在画面中的再现,要通过光作传播媒介,光线对摄影的造型表现,环境气氛的渲染,思想感情的表达,都有着极其重要的意义。大自然中,光是千变万化的,复杂微妙的。一天当中,阳光随着时间的变化,而不断改变入射的方向,角度及强弱, 就会在摄影造型中带来不同的效果。例如,太阳会升至或降至15度,也就是早晨或黄昏的时间,其特点是太阳入射角度小,光对景物照射垂直面受光面积大,物体产生投影较长,受光面与阴影面反差大,光线强度小,较柔和。在这种光线条件下,选用逆光、侧逆光拍摄,容易获得明显的空气透视感,画面呈现气氛浓烈,富有诗意的造型效果。当太阳与地面的光照度成20度至60度的时候,这种光线的特点是入射角适中,光线方向性明确,亮度变化小,造型效果好,光影移动慢,色温适中,这时正是摄影的黄金时间,此时拍摄景物清晰,影调明朗,层次丰富,有利于景物在造型上表现出立体感,空间感和质感。这时选择不同方向的光线造型,使景物能获得色调分明,层次丰富,线条刚劲,光线明快的效果。
当光照度成70度至90度的时候,阳光正午,光线垂直下照,物体只能顶部受光多,垂直面受光少,使景物照度明暗反差大,层次缺少,透视效果差,物体造型缺乏立体感。所以,在摄影造型效果上较少运用这种顶光。
从一天里直射阳光的光线变化,对造型带来的效果不同,我们可以选择采光的方向对造型进行设计。根据拍摄采光的方向与太阳照射物体方向的不同,采光的方向基本划分为顺光,侧光和逆光,这三种采光的不同,在摄影造型中同样产生不同的效果和影响。
顺光对摄影造型的表现力使物体受光面均衡,能全面表现物体的质感,影调配置主要主要靠物体本身的色调来完成。但顺光一般不利于表现物体的空间感和立体感,影调较平淡单调,层次感弱,缺科学家起伏明暗的视觉节奏效果,更不宜表现空间感大,物体数量众多的景物造型。
侧光对摄影造型的表现力较强,能使物体受光面与明暗面明显表现,画面明暗配置和反差鲜明清晰,物体层次丰富,空气透视现象明显,有利于表现物体的空间深度感和立体感,是摄影造型效果比较理想的光源。但在运用时,要注意受光面与明暗在画面造型中所占比例。
逆光在摄影造型表现中能表达空间深度及环境气氛的烘托,表现空间透视的效果,有利于勾画物体的轮廓线条和表现物体的数量,在构思运用低调画面来表现物体造型艺术效果更佳,但切记要运用暗背景来烘托主体。当拍摄物体的特写或近景时,最好正面运用补光办法,使物体正面的质感更好地表现,曝光则定以正亮度为宜,使造型效果更好。
正确地认识光线,掌握它的变化规律,了解它对摄影艺术造型表现力,是摄影者在“光感”修养中的必由之道。摄影创作中的用光是千变万化的,灵活多端的,但是它本能是不能忽视的。光是摄影的根基,实现摄影的技术过程通过光,达到摄影的艺术本质离不开光,摄影的艺术是光与影的艺术。没有光就不能获得影调,也就不能形成摄影艺术形象。所以,我们在摄影构思中。要有光的造型意识,调动光的造型作用,充分发挥光在摄影艺术造型的表现力。
三、光对色彩还原的要素
光在彩色摄影中对色彩正确还原是起着直接的因素。光与色彩有着密切的内在关系,总的来说,有光才有色,色从光来,又与光变。道理很简单,人在光线下能清楚地分辨物体的颜色,如果在没有光的黑暗中,什么颜色也难以争辨出来,这是因为色彩要通过光线的照射才能呈现。光作用于人的视觉,才能使我们感受到那些颜色的感觉。在复杂的彩色摄影中,色彩正确的还原和再现是彩色摄影的成败关键,光对色彩正确的还原有三点的要素,一是光源的性质,二是光的方向,三是光线的强弱。
光源的性质,它对物体颜色的还原影响很大,因为日光与灯光的性质不同,色温不同。日光的色温是5400K,而灯光的色温只有3200K,在日光与灯光下,物体会呈现出不同的色彩。如红色的物体在日光下看呈鲜红色,但在灯光下看,就会呈现出品红色或紫色。因为,它的光源性质不同,色彩还就不同。
光的方向,在同一物体而采用不同角度的光线照射,如直射光与散射光,顺光与侧光,逆光和顶光,光线照射方向不同,使物体产生的明暗不同,倒致其色彩在还原中产生不同的差别。顺光使用同一物体的色彩受光面相同,没有明暗区别,造成色彩缺乏明暗对比层次。侧光对可使同一物体的色彩在明暗度上产生明显的区别。逆光对物体的正面色彩表现较为难还原较差,常运用逆光的表现追求色彩的整体效果。光线的强弱也容易使物体颜色的色相、明度、饱和度发生极大的变化。
上述三点要素的分析,强调了色彩也光线,是彩色摄影的重要造型手段,选择光就是选择色彩。黑白摄影是对物体的造型选用不同明暗和影调,层次去表现,彩色摄影是通过色彩的艺术表现。黑白摄影讲究其用光,彩色摄影更加严谨用光,光线能造就影调的变化,也能使色彩效果更加生动,富有表现力。在彩色摄影构思和创作中,要了解和分析光源的性质,光的投射方向,光亮度的强弱,光对物体在造型上表现的效果。要调动“光”对色彩的艺术造型,增强艺术的表现力,才能预见画面的色彩效果,创作出生动,感人的艺术作品。
摄影艺术,是“光”与“影”的造型艺术,完成摄影的过程必须借助于光,正确运用和发挥光在摄影艺术造型中的功能,记录、反映、表现,传递我们的创作思维,情感和表现的技法,手法,达到画面的可视形象。光是摄影的灵魂和支柱,研究和探索光在摄影艺术造型中的动能,目的是确立光在摄影中地位和作用,使大家更了解它,熟悉它,掌握它。更好地运用它,发挥它。使摄影这门光影艺术散发出更灿烂的光芒。
跪求模具毕业论文!!!题目为:浅谈激光在模具制造中的应用!求高人指教!!!
随着与国际接轨的脚步不断加快,市场竞争的日益加剧,人们已经越来越认识到产品质量、成本和新产品的开发能力的重要性。而模具制造是整个链条中最基础的要素之一,模具制造技术现已成为衡量一个国家制造业水平高低闹匾?曛荆?⒃诤艽蟪潭壬暇龆ㄆ笠档纳?婵占洹?/P>
近年许多模具企业加大了用于技术进步的投资力度,将技术进步视为企业发展的重要动力。一些国内模具企业已普及了二维CAD,并陆续开始使用UG、Pro/Engineer、I-DEAS、Euclid-IS等国际通用软件,个别厂家还引进了Moldflow、C-Flow、DYNAFORM、Optris和MAGMASOFT等CAE软件,并成功应用于冲压模的设计中。
以汽车覆盖件模具为代表的大型冲压模具的制造技术已取得很大进步,东风汽车公司模具厂、一汽模具中心等模具厂家已能生产部分轿车覆盖件模具。此外,许多研究机构和大专院校开展模具技术的研究和开发。经过多年的努力,在模具CAD/CAE/CAM技术方面取得了显著进步;在提高模具质量和缩短模具设计制造周期等方面做出了贡献。
例如,吉林大学汽车覆盖件成型技术所独立研制的汽车覆盖件冲压成型分析KMAS软件,华中理工大学模具技术国家重点实验室开发的注塑模、汽车覆盖件模具和级进模CAD/CAE/CAM软件,上海交通大学模具CAD国家工程研究中心开发的冷冲模和精冲研究中心开发的冷冲模和精冲模CAD软件等在国内模具行业拥有不少的用户。
虽然中国模具工业在过去十多年中取得了令人瞩目的发展,但许多方面与工业发达国家相比仍有较大的差距。例如,精密加工设备在模具加工设备中的比重比较低;CAD/CAE/CAM技术的普及率不高;许多先进的模具技术应用不够广泛等等,致使相当一部分大型、精密、复杂和长寿命模具依赖进口。
未来冲压模具制造技术发展趋势?
模具技术的发展应该为适应模具产品“交货期短”、“精度高”、“质量好”、“价格低”的要求服务。达到这一要求急需发展如下几项:
(1)全面推广CAD/CAM/CAE技术?
模具CAD/CAM/CAE技术是模具设计制造的发展方向。随着微机软件的发展和进步,普及CAD/CAM/CAE技术的条件已基本成熟,各企业将加大CAD/CAM技术培训和技术服务的力度;进一步扩大CAE技术的应用范围。计算机和网络的发展正使CAD/CAM/CAE技术跨地区、跨企业、跨院所地在整个行业中推广成为可能,实现技术资源的重新整合,使虚拟制造成为可能。
(2)高速铣削加工
国外近年来发展的高速铣削加工,大幅度提高了加工效率,并可获得极高的表面光洁度。另外,还可加工高硬度模块,还具有温升低、热变形小等优点。高速铣削加工技术的发展,对汽车、家电行业中大型型腔模具制造注入了新的活力。目前它已向更高的敏捷化、智能化、集成化方向发展。
(3)模具扫描及数字化系统?
高速扫描机和模具扫描系统提供了从模型或实物扫描到加工出期望的模型所需的诸多功能,大大缩短了模具的在研制制造周期。有些快速扫描系统,可快速安装在已有的数控铣床及加工中心上,实现快速数据采集、自动生成各种不同数控系统的加工程序、不同格式的CAD数据,用于模具制造业的“逆向工程”。模具扫描系统已在汽车、摩托车、家电等行业得到成功应用,相信在“十五”期间将发挥更大的作用。
(4)电火花铣削加工?
电火花铣削加工技术也称为电火花创成加工技术,这是一种替代传统的用成型电极加工型腔的新技术,它是有高速旋转的简单的管状电极作三维或二维轮廓加工(像数控铣一样),因此不再需要制造复杂的成型电极,这显然是电火花成形加工领域的重大发展。国外已有使用这种技术的机床在模具加工中应用。预计这一技术将得到发展。?
(5)提高模具标准化程度?
我国模具标准化程度正在不断提高,估计目前我国模具标准件使用覆盖率已达到30%左右。国外发达国家一般为80%左右。
(6)优质材料及先进表面处理技术?
选用优质钢材和应用相应的表面处理技术来提高模具的寿命就显得十分必要。模具热处理和表面处理是否能充分发挥模具钢材料性能的关键环节。模具热处理的发展方向是采用真空热处理。模具表面处理除完善应发展工艺先进的气相沉积(TiN、TiC等)、等离子喷涂等技术。
(7)模具研磨抛光将自动化、智能化?
模具表面的质量对模具使用寿命、制件外观质量等方面均有较大的影响,研究自动化、智能化的研磨与抛光方法替代现有手工操作,以提高模具表面质量是重要的发展趋势。?
(8)模具自动加工系统的发展?
这是我国长远发展的目标。模具自动加工系统应有多台机床合理组合;配有随行定位夹具或定位盘;有完整的机具、刀具数控库;有完整的数控柔性同步系统;有质量监测控制系统。
激光器有哪些用途
由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。
今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。
激光的作用
激光
laser light
基于受激辐射光放大原理产生的相干辐射。激光具有如下特点:①定向性好。激光的发散立体角极小,一般在10-5~10-8 球面度范围内 。激光的高度定向性意味着激光能量集中在很窄的光束中。②亮度高。普通光源的亮度很低,太阳的亮度约为103 瓦/(厘米2·球面度),而大功率激光器的亮度高达1010~1017瓦/(厘米2·球面度 )。③单色性好。激光的单色性通常用v/Δv 来表征,v 为激光谱线中心的频率,Δv为谱线频宽,较好的激光器 v/Δv可达1010~1013。单色性好亦即时间相干性好。④空间相干性好。普通光源的空间相干性很差,光程差为波长的数千倍时,已不出现干涉现象;而激光几乎整个波场空间都是相干的。
激光装置发出的激光
利用激光的定向性好和高亮度,在测距、雷达、光纤通信、医学、机械加工(焊接、切割、钻孔等)、导弹制导和核聚变试验等方面广泛应用。激光的高强度使光谱学取得了突破性进展,开拓了新的研究领域;激光引起的非线性效应开创了非线性光学这一新领域。激光的极好的单色性为精密测量长度提供了十分有利的光源。可利用单色性好发展了光波的拍频技术,可测量极缓慢的速度(约 1微米/ 秒)和角速度(约10-1弧度 /秒)。具有良好相干性的激光出现后 ,全息术得以进入实用阶段并迅速应用于各个领域。在相干光信息处理领域,激光器已成为必不可少的光源。
激光材料
laser material
把各种泵浦(电、光、射线)能量转换成激光的材料 。激光器的工作物质。激光材料主要是凝聚态物质,以固体激光物质为主。固体激光材料分为两类。一类是以电激励为主的半导体激光材料,一般采用异质结构,由半导体薄膜组成,用外延方法和气相沉积方法制得。根据激光波长的不同,采用不同掺杂半导体材料 。通常在可见光区域 ,以族化合物半导体为主;在近红外区域,以族化合物半导体为主;在中红外区域以Ⅳ-Ⅵ 族化合物半导体为主 。另一类是通过分立发光中心吸收光泵能量后转换成激光输出的发光材料。这类材料以固体电介质为基质,分为晶体和非晶态玻璃两种。激光晶体中的激活离子处于有序结构的晶格中,玻璃中的激活离子处于无序结构的网络中。常用的这类激光材料以氧化物和氟化物为主,如硅酸盐玻璃、磷酸盐玻璃、氟化物玻璃、氧化铝晶体、钇铝石榴石晶体、氟化钇锂等。氧化物材料具有良好的物理性质,如高的硬度、机械强度和良好的化学稳定性;氟化物材料具有低的声子频率、宽的光谱透过范围和高的发光量子效率。
激光测距
laser distance measuring
以激光器作为光源进行测距。根据激光工作的方式分为连续激光器和脉冲激光器。氦氖、氩离子、氪镉等气体激光器工作于连续输出状态,用于相位式激光测距;双异质砷化镓半导体激光器,用于红外测距;红宝石、钕玻璃等固体激光器,用于脉冲式激光测距。激光测距仪由于激光的单色性好、方向性强等特点,加上电子线路半导体化集成化,与光电测距仪相比,不仅可以日夜作业、而且能提高测距精度 ,显著减少重量和功耗,使测量到人造地球卫星、月球等远目标的距离变成现实。
激光唱片
laser disc
用激光刻录方法记录音频信号的圆形薄片载音体。激光数字唱片又称致密唱片和小型唱片。激光录放音是20世纪70年代末期唱片向数字化方向发展的成果。激光数字唱片直径120毫米,单面录音,可放唱1小时立体声节目,动态范围为90分贝。这种记录密度极高的声迹是由激光束按信号编码刻录的小坑和坑间平面组成的。它们分别代表二进制的 0和 1。唱片在重放时,用激光束扫描拾取二进制数码,整个放音设备采用十分精密的伺服控制系统来保证循迹良好。激光唱片已可擦除旧信号重新记录。由于激光唱片的记录密度大,重放音质好,体积小、易保存等优点,它正逐步取代普通唱片和磁带成为未来音频信号的主要载体。
激光地球动力学卫星
Laser Geodynamic Satellite
美国发射的激光测地卫星 。英文缩写是 Lageos 。它的主要任务是验证与地震有关的一些课题:测定地球板块运动;测量地球自转和极移;考察地震发生机制;观测陆潮与地球的关系;配合1975年4 月10 日发射的海洋地球动力学实验卫星3号(840千米高度的近圆轨道,倾角114.96° ) ,为评定大陆漂移学说提供资料。卫星于1976年5月4日发射,作为精确测地的恒定参考点。它长期保持在高度约5800千米、倾角110°、周期225.4分钟的较为稳定的轨道上,对引起地震的微小地壳运动进行测量。卫星为铝制球形体,直径 0.6 米 ,重410千克。卫星表面装有426块激光反射镜,用以反射从地球站发射的激光束。有10多个国家参加全球动力学观测研究。多地震国家已相继建立起激光跟踪站 ,初期测距精度约为 5厘米,1980年提高到2厘米,时间测量精度达 10-8~10-9秒 。用于地球站的 激光器是钕 钇铝石榴石晶体 , 激光脉冲宽度0.2 毫微秒 。地球站对卫星的仰角超过20°时即可获得数据,卫星过顶时可获得最佳数据,处于低仰角时测量受大气干扰较严重。卫星测量证明,美国主要地震带加利福尼亚州圣安德烈斯断层的位移比历史记录的活动期约快50%。利用卫星观测的结果将能逐步建立全球精确的地震模型和绘制全球地震图。
激光告警器
laser warning equipment
设置在坦克、舰艇、飞机等武器装备上,用于探测、报知敌方激光武器、激光制导武器、激光雷达 、激光测距机等的被动侦察装备。又称激光报警器。20世纪70年代初开始研制,尚处在实验阶段。仅有少数型号装备部队 ,如美国装备于直升机上的AN/AVR-2型激光告警器 。激光告警器通常由扫描天线、激光监别器、探测器、放大器、微处理机、指令控制器、报警显示器等组成。它是根据激光的相干特性,在激光束变成电信号之前加激光鉴别器,以鉴别信号是否由激光源发出的,再根据干涉条纹分布和出现的时间,确定激光的波长、脉宽、光强等参数,然后经放大器送入微处理机进行分析和处理。最后,一路以声、光形式发出报警信号;一路通知干扰对抗系统。
激光光谱
laser spectra
以激光为光源的光谱技术。与普通光源相比,激光光源具有单色性好、亮度高、方向性强和相干性强等特点,是用来研究光与物质的相互作用,从而辨认物质及其所在体系的结构、组成、状态及其变化的理想光源。激光的出现使原有的光谱技术在灵敏度和分辨率方面得到很大的改善。由于已能获得强度极高、脉冲宽度极窄的激光,对多光子过程、非线性光化学过程以及分子被激发后的弛豫过程的观察成为可能,并分别发展成为新的光谱技术。激光光谱学已成为与物理学、化学、生物学及材料科学等密切相关的研究领域。
可调(谐)激光光源实际上是一台可调谐激光器,又称波长可变激光器或调频激光器。它所发出的激光,波长可连续改变,是理想的光谱研究用光源,可调激光器的波长范围在真空紫外的118.8纳米至微波的 8.3 毫米之间 。可调激光器分为连续波和脉冲两种,脉冲激光的单色性比一般光源好,但其线宽不能低于脉宽的倒数值,分辨率较低。用连续波激光器作光源时,分辨率可达到10-9(线宽<1兆赫)。
常见的激光光谱包括以下几种:
①吸收光谱。激光用于吸收光谱,可取代普通光源,省去单色器或分光装置。激光的强度高,足以抑制检测器的噪声干扰,激光的准直性有利于采用往复式光路设计,以增加光束通过样品池的次数。所有这些特点均可提高光谱仪的检测灵敏度。除去通过测量光束经过样品池后的衰减率的方法对样品中待测成分进行分析外,由于激光与基质作用后产生的热效应或电离效应也较易检测到,以此为基础发展而成的光声光谱分析技术和激光诱导荧光光谱分析技术已获得应用。利用激光诱导荧光、光致电离和分子束光谱技术的配合,已能有选择地检测出单个原子的存在。
②荧光光谱。高强度激光能够使吸收物种中相当数量的分子提升到激发量子态。因此极大地提高了荧光光谱的灵敏度 。 以 激光为光源的荧光光谱适用于超低浓度样品的检测,例如用氮分子激光泵浦的可调染料激光器对荧光素钠的单脉冲检测限已达到10-10摩尔/升,比用普通光源得到的最高灵敏度提高了一个数量级。
③拉曼光谱。激光使拉曼光谱获得了新生,因为激光的高强度极大地提高了包含双光子过程的拉曼光谱的灵敏度 、分辨率和实用性。为了进一步提高拉曼散射的强度,最近又研究出两种新技术,即共振拉曼光谱法和相关反斯托克斯拉曼光谱法(CARS),使灵敏度得到更大的提高,但尚未成为常规的分析方法。
④高分辨激光光谱。激光对高分辨光谱的发展起很大作用,是研究原子、分子和离子结构的有力工具,可用来研究谱线的精细和超精细分裂、塞曼和斯塔克分裂、光位移、碰撞加宽、碰撞位移等效应。
⑤时间分辨激光光谱。能输出脉冲持续时间短至纳秒或皮秒的高强度脉冲激光器,是研究光与物质相互作用时瞬态过程的有力工具 ,例如 ,测定激发态寿命以及研究气 、液、固相中原子、分子和离子的弛豫过程。
激光晶体
laser crystal
可将外界提供的能量通过光学谐振腔转化为在空间和时间上相干的具有高度平行性和单色性激光的晶体材料。是晶体激光器的工作物质。激光晶体由发光中心和基质晶体两部分组成。大部分激光晶体的发光中心由激活离子构成,激活离子部分取代基质晶体中的阳离子形成掺杂型激光晶体。激活离子成为基质晶体组分的一部分时,则构成自激活激光晶体。
激光晶体所用的激活离子主要为过渡族金属离子和三价稀土离子。过渡族金属离子的光学电子是处于外层的3d电子,在晶体中这种光学电子易受到周围晶场的直接作用,所以在不同结构类型的晶体中,其光谱特性有很大差异。三价稀土离子的4f电子受到5s和5p外层电子的屏蔽作用,使晶场对其作用减弱,但晶场的微扰作用使本来禁戒的4f电子跃迁成为可能,产生窄带的吸收和荧光谱线。所以三价稀土离子在不同晶体中的光谱不像过渡族金属离子变化那么大。
激光晶体所用的基质晶体主要有氧化物和氟化物。作为基质晶体除要求其物理化学性能稳定,易生长出光学均匀性好的大尺寸晶体,且价格便宜,但要考虑它与激活离子间的适应性,如基质阳离子与激活离子的半径、电负性和价态应尽可能接近。此外,还要考虑基质晶场对激活离子光谱的影响。对于某些具有特殊功能的基质晶体,掺入激活离子后能直接产生具有某种特性的激光,如在某些非线性晶体中,激活离子产生激光后通过基质晶体能直接转换成谐波输出。
激光雷达
laser radar
用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2 种工作方式 ,探测方法分直接探测与外差探测。
激光雷达在军事上可用于对各种飞行目标轨迹的测量 。如对导弹和火箭初始段的跟踪与测量,对飞机和巡航导弹的低仰角跟踪测量 ,对 卫星的 精密定轨等 。激光雷达与红外、电视等光电设备相结合,组成地面、舰载和机载的火力控制系统,对目标进行搜索、识别、跟踪和测量。由于激光雷达可以获取目标的三维图像及速度信息,有利于识别隐身目标。激光 雷达可以对大气进行监测 ,遥 测大气中的污染和毒剂,还可测量大气的温度、湿度、风速、能见度及云层高度。
激光录像
laser recording
通过光调制器用激光束把经过编码的图像和声音信息记录到圆形薄片载体上的过程 。用音频信号对已调频的视频信号进行限幅,通过光调制器用激光束把这样的信号刻到原盘上,构成小坑列,用以记录经过调制的视频信号与音频信号。小坑在盘上呈螺旋形自内向外排列。然后用制好的原盘制造唱片的压模,唱片材料为透明聚氯乙烯塑料,为了能反射激光束,成形后蒸镀上铝层,再加上一层保护膜,最后把两张这样的唱片背靠背地胶合在一起,成为双面唱片。激光式电视唱机的氦氖激光器发出激光束,通过物镜照到唱片刻有小坑的纹迹上,小坑内蒸镀的铝层将激光束反射回来时,因衍射而产生光强度调制,进入光敏二极管后产生相应的电信号。激光电视录像技术用途广泛,不仅可以用来记录电视信号 ,还可成为具有高记录密度,便于检索的计算机系统中的一部分。激光录像的发展方向是提高记录密度 ,缩小唱片尺寸 ,使唱片能随录随放和抹去重录。
激光器
laser
能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年 A.L.肖洛和C. H.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960 年 T. H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器 4 大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束 ,激光波长可覆盖从微波到X射线的广阔波段 。按工作方式分,有连续式、脉冲式、调 Q 和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达 数 千 种 , 最长的波长为微波波段的0.7毫米,最短波长为远紫外区的 210埃,X射线波段的激光器也正在研究中。
除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运 )、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔) 3 部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。